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The dispersion and mixing of passive scalar (temperature) fluctuations is studied in a 
turbulent jet. The temperature fluctuations were produced by heated fine wire rings 
placed axisymmetrically in the flow. Typically the ring diameters were of the same 
order as the jet, Dj, and they were placed in the self-similar region. However, other 
initial conditions were studied, including a very small diameter ring used to 
approximate a point source. Using a single ring to study dispersion (which is analogous 
to placing a line source in a planar flow such as grid turbulence), it was found that the 
intense local thermal field close to the ring disperses and fills the whole jet in 
approximately 1.5 eddy turnover times. Thereafter the thermal field evolves in the same 
way as for the traditional heated jet experiments. Two heated rings were used to study 
the mixing of two independently introduced scalar fields. Here an inference method 
(invoking the principle of superposition) was used to determine the evolution of the 
cross-correlation coefficient, p, and the segregation parameter, a, as well as the 
coherence and co-spectrum. While initially strongly dependent on ring locations and 
spacing, p and a reached asymptotic values of 1 and 0.04, respectively, also in about 
1.5 eddy turnover times. These results are contrasted with mixing and dispersion in grid 
turbulence where the evolution is slower. Measurements in the far field of the jet (where 
p = 1) of the square of the scalar derivative conditioned on the scalar fluctuation itself, 
as well as other conditional statistics, showed strong dependence on the measurement 
location, as well as the direction in which the derivative was determined. The cross- 
correlation between the square of the scalar derivative and the signal showed a clear 
Reynolds-number trend, decreasing as the jet Reynolds number was varied from 2800 
to 18000. The far-field measurements, using the heated rings, were corroborated by 
new heated jet experiments. 

1. Introduction 
Scalar contaminants such as pollutants, chemical reactants, or temperature 

inhomogeneities, are often introduced into a background flow (be it the atmosphere, 
ocean or a laboratory flow) approximately at a point, or at least at a scale significantly 
smaller than that of the surrounding turbulence. Chimneys and fuel injectors are 
typical examples. The scalar is then dispersed by molecular and turbulent diffusion 
such that its scale increases, the inhomogeneities decrease, and the scalar concentration 
dilutes. If chemical reaction occurs then two scalars are involved, and these must be 
mixed by the turbulence so that there is a transfer of matter or heat between the two 
species down to molecular scales. Thus dispersion and mixing are intimately connected, 
the latter accentuating the interaction of two or more distinct species. One of these may 
be the surroundings themselves, but often two contaminants, A and B, are mixed in a 
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reported here, it is time averaging at a particular location in space). When, for the 
situation shown in figure 1, the two scalars are completely mixed with each other, 
p = 1, i.e. the scalars are perfectly correlated. Note that complete mixing means that 
the cross-correlation of unity must apply for all scales, i.e. the coherence (as a function 
of wave number or frequency) must be unity. 

Another related way of describing the mixing process is in terms of the segregation 
parameter, a( = (c, c,)/(( C,) (C,))). This parameter, introduced by Danckwerts 
(1952), arises when considering the depletion rate of the reactants. Thus if we consider 
the unidirectional reaction between two initially unpremixed reactants, A and B (see for 
example Komori et al. 1991), the rate of change of the mean concentration of A is given 
by 

where C, = (C,) + c, is the instantaneous concentration of A ,  K and k are the 
molecular diffusivity and the chemical reaction rate constant respectively, and U, and 
ui are the mean and fluctuating velocities in the xi direction. A similar equation can be 
written for (C,). The second term on the right-hand side of (1) can be written in the 
form 

- 

where a, the segregation parameter, has been defined above. If a = - 1 there is no 
molecular mixing since C, C, = 0. Clearly both the sign and magnitude of a play a 
vital role in the reaction, yet, as Komori et al. (1991) point out, it has been poorly 
documented. (Some workers have even set a equal to zero, thereby possibly accruing 
large error in their reaction rate calculations.) Note that while the sign of a is 
determined by the cross-correlation, its magnitude depends on the relative intensity of 
the fluctuations, (c')>'/'/(C), and this varies from flow to flow. 

In the work to follow, we will determine both p and a by a method of inference 
(Warhaft 1981, 1984). Here a single scalar (temperature) is introduced into the flow at 
two separate locations in a manner similar to figure 1. If the velocity field is statistically 
stationary, the scalar is passive, and the line source from which it is introduced is 
sufficiently small so that it does not affect the flow dynamics, then p or a can be 
determined by first operating source A ,  thereby allowing the mean and variance, and 
(el), to be measured at a particular downstream location, then operating source B and 
measuring TB and (19;). Finally both sources are operated together and TA + TB and 
((8, + 8,)') = (8:) + (8;)  + 2(8, 6,) are measured at the same location. Since (8:) 
and (19;) have already been measured, the covariance term, (8, O,), and thus p and 
a can be determined from this final measurement. The method has been used 
previously for distributed and line sources in grid turbulence (Warhaft 1981 and 1984 
respectively), and has been shown by Sirivat & Warhaft (1982) to yield the same results 
as measurements using two different scalars (helium and temperature). Here we will use 
it for the study of mixing in a jet by placing two concentric fine heated wire rings 
downstream from the origin, as sketched in figure 1 (b). 

Apart from p and a, there are other important parameters in the mixing process. For 
example the smearing of the small-scale scalar fluctuations by molecular effects is 
described by the 'scalar dissipation' term e! = K(a8/axj) (aO/ax,). (Here we are using 
temperature fluctuations, 8, but the same discussion applies for species A or B.) It is 
of particular interest to know how eo is conditioned by the value of the temperature 
fluctuations themselves, since the rate equation for the probability density function 
(p.d.f.) of a scalar explicitly contains the conditional dissipation as well as other 
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conditional terms (Pope 1985; Sahay & O’Brien 1993). We will determine these 
parameters and describe the relevant theory in the work to follow. 

We have chosen a jet for our study of dispersion and mixing for a number of reasons. 
First, it is a basic and well-documented flow and, as mentioned above, there have been 
a number of experiments in which pure mixing (with the surrounding ambient air) has 
been studied. Thus we have reference conditions with which we can compare our 
results. Secondly, the jet has shear and inhomogeneity, characteristics that are 
invariably present in both industrial and atmospheric flows. In our previous 
experiments we studied mixing and dispersion in grid-generated turbulence, a flow 
which is homogeneous and without shear. Paradoxically there are some aspects of the 
more complex shear flows that make their study easier. We will show that the shear 
enhances the rate of mixing allowing clear asymptotic values to be measured. On the 
other hand grid turbulence evolves slowly and the asymptotic values of parameters 
such as a, p and ((02))1’2/T (the relative scalar intensity) are difficult to determine. 
Finally, the theoretical and computational work of Kerstein (1992) has provided 
impetus for this study. In the final section of his paper, Kerstein specifically addresses 
the problem of two-source mixing in a jet, and it seemed that the interference method 
was well suited to examine his predictions. 

As mentioned above, we introduce the scalar field into the jet by means of two fine 
heated rings placed concentrically downstream of the jet exit (figure 1 b and §2). (On 
most occasions the rings were in the same plane, but for some experiments one was 
shifted longitudinally with respect to the other.) In preliminary experiments (Warhaft 
1992) it was found that the fine rings reduced the turbulence intensity of the jet when 
placed close to the jet exit (closer than at x / D j  - 3 where Dj is the jet diameter). 
Subsequently it was shown (Tong & Warhaft 1994a) that the rings slightly modify the 
mean velocity profile and this results in an inhibition of the vortex pairing mechanism, 
thereby suppressing the fluctuation intensity. However, if the rings were placed further 
downstream they had no measurable effect on the velocity field. Thus for most of the 
work to be reported here they will be placed at x / D j  = 9, just after the onset of the fully 
developed self-similar region of the jet. However, we will show that even if placed very 
close to the jet origin, the nature of the mixing and dispersion process does not appear 
to be significantly altered due to the rings effect on the velocity field. 

The rings, whose diameters were generally of the order of that of the jet itself 
(although their diameters were varied over a relatively wide range) are analogous to 
line sources in grid turbulence. A further possible dispersion experiment is to place a 
point source along the jet axis. This is rather difficult to do because of the power 
required to heat the source, but an approximate point source was achieved by placing 
a very small ring along the jet centreline. Finally, some experiments were conducted 
using a heated jet and a combination of a heated jet and a ring. 

The outline of the paper is as follows. After describing the apparatus in 92, we begin 
the results section by documenting the velocity field (93.1). We then discuss the 
dispersion and mixing experiments by dividing the development of the thermal field 
into two stages: the near and the far field. In the near field the thermal fields from the 
rings disperse and then mix with each other as the thermal wakes grow wider (B3.2 and 
3.3). We will show that here the cross-correlation is initially negative and then builds 
up towards a value of + 1 as the two thermal fields become completely mixed with each 
other. We define the near field as that region when p < 1. After p - 1, we will show that 
the evolution of the thermal field is independent of its initial conditions and that it 
behaves in the same way as the traditional heated jet experiments, i.e. the mixing is 
exclusively with the ambient air, and not between the fields from the line sources 
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FIGURE 2. A sketch (not to scale) of the apparatus showing the two different methods of 
generating the thermal field. (a) Side view, only one ring is shown. (b) Plan view. 

themselves. For both the near and far field we will document the downstream and 
lateral evolution of the mean, variance, and the relative intensity of the fluctuations. In 
the near field ($3.3) we will particularly be concerned with the covariance statistics 
between the two scalars ( p ,  a, coherence, co-spectrum, etc.) while in the far field (§ 3.4) 
we will study p.d.f.’s and conditional statistics. 

In concept the present work is an extension of Warhaft (1984) to a shear flow. 
However, here we examine aspects (particularly p.d.f.’s and conditional statistics) not 
studied in that previous work. Preliminary results of the present study appeared in 
Warhaft (1992). The effects of the rings on the velocity field are described in Tong et 
al. (1994a). 

2. Apparatus 
The air jet was originally constructed for velocity measurements in the region 

30 < x/Di  < 150, where Di is the jet diameter (Panchapakesan & Lumley 1993). Here 
our measurements will be confined to the initial and the early part of the self-similar 
region, 0 < x / D ,  < 40. The jet issued vertically from the floor into a closed room of 
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dimensions 4.25 x 4.25 x 3.75 m (figure 2). The air for the jet was supplied through a 
small wind tunnel of 10 cm diameter, by an air compressor. The jet flowed upwards 
into a collection hood on the ceiling (about 250 diameters downstream for the 15 mm 
jet in the present experiment). In order to match the flow rate through the hood, 
ambient air was entrained through the holes on the floor. This arrangement ensured 
minimum disturbance to the flow. Further details of the jet facility can be found in 
Panchapakesan & Lumley (1993). 

As explained in the introduction, the thermal fields were formed by two different 
methods : by placing fine wire rings in the jet, and by the traditional way of heating the 
whole jet. The heated rings (which were self-supporting since the leads were copper 
coated (Tong & Warhaft 1994a)), were made from nichrome wire of 0.254mm 
diameter, and were placed concentrically in the jet (mostly at x / D j  = 9) to study 
thermal dispersion and mixing from localized sources (figures 1 b and 2). For most 
of these measurements, a 30 mm nozzle was used. The Reynolds number of the ring 
wire, when cold, was 95. When the rings were heated their Reynolds number was 
considerably reduced since the viscosity of the air surrounding the ring increased. The 
effects of the rings on the velocity field has been reported in Tong & Warhaft (1994a), 
where it was found that if the rings were placed at x / D j  > 3, their effects on the flow 
were negligible for ring wire Reynolds number varying from 30 to 120. In order to 
produce the temperature fluctuations, approximately 10 W of electrical power was 
applied to the rings. We also attempted to study thermal dispersion from a point source 
by placing a very small ring of diameter 2 mm on the jet centreline, at x / D i  = 9. Clearly 
this is not a ideal point source (the Kolmogorov scale in the jet was order of 0.1 rnm), 
but smaller rings did not allow for enough power to provide sufficiently high 
temperature fluctuations for the measurements. We will show below that although only 
approximating a point source, the small ring gave very satisfactory results in the 
turbulent convective and diffusive regimes. For the heated jet experiment, a spiral of 
resistance ribbon was placed at the beginning of the wind tunnel as the heating element 
(figure 2). Because of the way the air was heated, the thermal field was still not 
completely mixed, and there were some temperature fluctuations at the jet exit. We will 
show that because of this the thermal field initially developed faster than for the usual 
heated jet experiments, but soon (by x / D j  = 15) the results were similar to those of 
previous experiments. 

For the dispersion experiments with the fine rings, the jet diameter, Di, was 30 mm 
and the jet exit velocity, Uj,  was 9 m s-'. For the heated jet experiments, Uj was varied 
from 4.5 to 18 m s-' for Dj = 15 mm and was kept constant at 7 m s-' for some 
experiments with a 6 mm jet. The main flow parameters are given in table 1. The 
temperature of the heated jet at the exit, q, was 10 "C above the ambient. As the flow 
evolves buoyancy effects become important. We used the criterion given by Chen & 
Rodi (1980) to determine the non-buoyant region of the jet. They showed 
experimentally that in order for the flow to remain passive, the relation, 
F~'~z(pi/p,"''4x/Di < 0.5, must hold. Here F 3 U;pj /gDi(p , -p i )  is the Froude 
number and g, pi and pa are the gravitational acceleration, air density at the jet exit 
and density of ambient air respectively. The non-buoyant regions for our heated 
jet experiment were x / D j  < 127 for Ui = 18 m s-l, x / D j  < 63 for Ui = 9 m s-' and 
x / D j  < 32 for Ui = 4.5 m s-l. The measurements were made mainly at x /Di  = 40 for 
18 and 9 m s-l and at x /Di  = 30 for 4.5 m s-', well within the passive region. 

The mean temperature was measured with a chromal-constantan thermocouple. 
The temperature fluctuations were measured with platinum resistant wires of diameter 
1.25 pm for the experiments when the jet Reynolds number, Rei = Uj Di/u, was 9000 
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D, (mm) U, (m s-I) x / D ,  Re, 4 / z  (mm) Re, R,4 7 (mm> 18,12 (mm) 
30 9 9 18 000 28 2300 190 0.08 - 

15 18 40 18 000 60 2600 198 0.17 70 
15 9 40 9 000 60 1230 136 0.29 70 
15 . 4.5 30 4 500 - - - - __ 

- - - 6 7 30 2 800 - - 

TABLE 1. Velocity characteristics. Here U, is the jet exit velocity, Dj is the jet diameter, x / D j  is the 
measurement position, ll/z is the jet half-width at the measurement location and Z8112 is the mean 
temperature half-width for the heated jet experiments. Res = U, D,/v is the jet Reynolds number, 
where v is the kinematic viscosity (1.5 x mz s-l). Re, = ( U ~ ) ~ / ~ Z ~ / ~ / V  is the turbulent Reynolds 
number, where ( u ~ ) ~ / ~  is the longitudinal r.m.s. velocity. The microscale Reynolds number, 
R, = ( U ~ ) > ' / ~ A / V ,  where A, the Taylor microscale, is determined from the longitudinal velocity 
derivative. The Kolmogorov scale, 7, is lllz Re;::. The blank spaces are unmeasured parameters. 

or lower and 0.625 pm for the measurements at Rei = 18000. The wire length to 
diameter ratio was approximately 500 in both cases. In order to measure temperature 
derivatives, a pair of carefully matched wires was used. The separation of the wires was 
0.33 mm which corresponded to a ratio of A / 7  = 1.89 at x / D i  = 40 for Rei = 18000, 
where A and 7 are the wire separation and Kolmogorov scale respectively. The 
separation was chosen as a compromise between accurately determining the derivative 
and minimizing the correlation coefficient between the temperature fluctuations, 0, and 
the m'easured temperature difference, AO, from which the derivative was determined. 
The derivative measurement requires the noise level to be low, and this increases 
relative to the signal when A is diminished (Antonia & Mi 1993). However, in order to 
correctly estimate the correlation between small- and large-scale quantities (i.e. 
temperature fluctuations and their dissipation), the cross-correlation between A0 and 
0, PAS,$, and thus A ,  should be as small as possible. Tong & Warhaft (1994b) show that 
PA*,* increases linearly with A and is nearly 0.15 for A / ?  = 3, a spacing often used by 
other workers. For the separation chosen here ( A / 7  = 1.89), PAS,* was approximately 
0.07 and the variance of the noise differences of the two wires was less than 10 % of the 
signal differences, so no extrapolation was needed to infer statistics for small wire sep- 
arations (as done by Antonia & Mi 1993). For all the Reynolds number studied (Rej  = 

2800-18000), the probe spacing was between 0.927 and 1.897, thus the temperature 
field was well resolved. More details are given in Tong & Warhaft (1994b). Velocity 
fluctuations were measured with a TS1 1241 tungsten X-probe calibrated using a 
method due to Browne, Antonia & Chua (1989), in which a single effective angle 
between the streamwise direction and the wire was determined. The wires were operated 
with an overheat ratio 1.8 in conjunction with Dantec 55M01 anemometers. The 
separation between the X-wire and the temperature wire was about 1 mm. This is wider 
than the Kolmogorov scale but these measurements were only used to determine 
correlations at the integral scale (see $3.4). The velocity signal was offset before being 
amplified and the temperature signals were high-pass filtered. Then all signals were 
low-pass filtered to eliminate high-frequency noise and digitized with a 12 bit A/D 
converter. For most cases, 4 x lo5 samples were taken for each data record. The 
sampling period was rapid for the spectra and coherence measurements (order of a 
Kolmogorov time period) but for the p.d.f. and conditional dissipation measurements 
it was slow (order of an integral scale). Here the samples must be independent of each 
other (Tennekes & Lumley 1972, Ch. 6). 
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FIGURE 3 .  The normalized centreline velocity, U,/ U,, and longitudinal turbulence intensity, 
(u2)'12/Uc, as a function of normalized downstream distance, x/D, .  (a) Dj  = 30 mm, U, = 9 m s-l, 
Re, = 18 000. (b)  D, = 15 mm, U, = 18 m s-', Re, = 18 000. For case (a) a 30 mm ring was placed in 
the flow at x / D ,  = 9 and for case (b )  a 15 mm ring was placed in the flow at x / D j  = 4. Profiles were 
also measured without the ring in the flow. 0, U,/U, no ring; A, U,/U,  with ring; 0, (u2)1 /2 / l vc  no 
ring; 0, (u2)1 /2 / lJ ,  with ring. 

3. Results 
3.1. Flow conditions 

Before outlining the results of the scalar dispersion and mixing, we will describe the 
characteristics of the velocity field. 

The mean and r.m.s. longitudinal velocity along the jet centreline are shown in figure 
3 for Dj = 30 mm, Uj = 9 m s-l (figure 3 a) and Di = 15 mm, Uj = 18 m s-l (figure 3 b). 
Rej is 18 000 for both cases (table 1). In the self-similar region ( x / D j  2 8), the centreline 
mean velocity decays as U, = 6.13Ui[(x-x,) /Dj]-1 where U, is the streamwise mean 
velocity on the jet centreline and x,, is the virtual origin of the jet. The decay constant 
is close to the value of 6.2 given by Chen & Rodi (1980). Notice that while self- 
similarity for the mean velocity occurs by x / D .  = 8, it takes longer for the longitudinal 
turbulent intensity, ( u ~ ) ~ / ~ /  U,, where (u~)~~' is the longitudinal r.m.s. velocity, to 
reach its asymptotic value of around 0.25. Figure 3(a) also shows that the rings used 
to introduce temperature fluctuations into the jet do not have significant effects on the 
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FIGURE 5. The evolution of the centreline scalar fluctuation intensity, O / T , .  The open symbols are for 
the same conditions as figure 4. The crosses are the average values taken from previous jet data 
compiled by Dowling & Dimotakis (1990) and the filled circles are from the Lockwood & Moneib 
(1980) heated jet experiments. Our own heated jet experiments are the plus signs. 

velocity field when placed at x /Di  = 9. The effect of the rings on the velocity field when 
placed closer to the jet is discussed in Tong & Warhaft (1994a). The velocity profile at 
the jet exit was close to top-hat and the fluctuation intensity was about 0.1%. 
Transverse profiles at different downstream locations in the self-similar region (not 
shown here) were in good agreement with those in literature (Wygnanski & Fiedler 
1969; Panchapakesan & Lumley 1993; Hussein, Capp & George 1994). 
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FIGURE 6. (a) Transverse mean temperature profiles and (b) transverse r.m.s. temperature profiles at 
various x / D ,  for a 40 mm ring placed at x / D j  = 9. Dj = 30 mm and Uj = 9 m ss'. 0, x / D j  = I1 ; 0, 
x / D ,  = 13; A, x / D ,  = 15; 0, x / D j  = 17. The line is the data from Dowling & Dimotakis (1990), 
measured in the self-similar region (30 < x / D j  < 90). 

3.2. Dispersion from a single source 
The evolution of the mean temperature, T,, along the jet centreline (relative to the 
ambient surroundings) for rings of different diameters located at x / D j  = 9 for Dj  = 
30 mm is shown in figure 4. Also plotted are the results of the 15 mm heated jet, and 
the upper and lower boundaries of results from different heated jet and concentration 
experiments compiled by Dowling & Dimotakis (1990). For these mean temperature 
(or concentration) measurements Dowling & Dimotakis plotted their results in the 
form (T,/ 7J (x - x,,)/Dj,  where xos is the virtual origin for the scalar field (which is close 
to that of the velocity). This scaling produces a horizontal line in the fully developed 
region. Since in the self-similar region the scalar spreads at the same rate as the jet, the 
value of the ordinate corresponds to the decay constant, C ,  of mean temperature, 
defined by T, = C ~ [ ( x - x o , ) / D j ] - ' .  

The thermal field close to the rings was quite different from that of the heated jet, with 
very high initial mean values. Thus we adopted a slightly different scaling, plotting the 
ordinate as C,  T x / D j ,  and selecting the constant C, such that the mean temperature 
fell in the same range as the heated jet in the self-similar region. The selection of C, 
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FIGURE 7. Transverse mean temperature profiles for the approximate point-source experiment. A 
2 mm ring was placed at x / D ,  = 9 (U, = 9 m s-', D, = 30 mm). The measurement locations are: 0, 
x / D ,  = 10; 0, x / D ,  = 10.7; a, x / D ,  = 11.7; 0, x / D ,  = 13; 0, x / D j  = 14. The transverse distance 
has been normalized by the mean thermal field half-width, a. A Gaussian curve is shown as a solid 
line. 

effectively matches the heat flux of the various experiments. While the temperature is 
high immediately downstream of the small rings (10 and 20 mm diameter), it 
approaches a horizontal line at x / D j  M 20 (with the larger ring reaching it quicker) 
suggesting that at this location the mean field is similar to that of the heated jet 
experiment. The low initial value for the 30 and 40 mm rings are because, for these 
large-diameter rings, the peak mean temperatures occur off the jet centreline before 
they merge by x/Dj M 13 (see figure 6a, below). 

The results for our heated jet experiment are also shown in figure 4. As mentioned 
in $2, the resistance ribbon in the plenum used to heat the air produced considerable 
fluctuations which had not vanished by the jet exit. Thus our results show greater initial 
value for both mean and r.m.s. temperature than does previous work. However, by 
x / D j  M 15 the mean field has become self-similar, well before the region of interest for 
the study of mixing in the far field ($3.4). We scaled the results in the same way as 
Dowling & Dimotakis (1990) and the mean temperature decay constant was found to 
be 4.3. 

The temperature fluctuation intensity on the jet centreline, (O')>'''/lT,, for the cases 
just discussed, is plotted in figure 5,  and again compared with the results from the 
average values of data compiled by Dowling & Dimotakis (1990), and with the 
experiment of Lockwood & Moneib (1980). Most workers with heated jets obtain an 
asymptotic value of 0.21 k0.03 in the self-similar region. Close to the rings, as would 
be expected, a very high fluctuation intensity is produced, but it decreases quickly and 
by x / D j  M 20 it approaches the value observed for heated jets. This is approximately 
the same location at which the mean temperature became self-similar (figure 4). The 
results for smaller rings show a similar trend to the larger ones although it takes longer 
for them to reach the asymptotic value. Our heated jet results have a higher 
temperature fluctuation intensity in the developing region due to the reason mentioned 
in the previous paragraph. However, its asymptotic value of approximately 0.2, is close 
to other heated jet experiments. (The fact that it appears to reach the self-similar values 
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FIGURE 8. (a) The downstream evolution of the half-width of the mean temperature profiles for 
the point source (circles, same flow conditions as figure 7) and a 10 mm ring (squares) also placed at 
x / D j  = 9 (U, = 9 m s-l, Dj = 30 mm). The half-width has been normalized by the half-width of the 
jet determined at x / D ,  = 9. The position of the ring is xri,, and t / r  is the time measured in eddy 
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for mean and r.m.s. temperature at approximately x / D j  = 10, somewhat earlier than 
the previous heated jet experiments, appears to be associated with the incomplete 
mixing in the plenum.) 

The transverse profiles of mean and r.m.s. temperature, Tand (02)1/2, for the 40 mm 
ring, normalized by the centreline mean are plotted in figures 6(a) and 6(b). For this 
diameter ring, the ratio of the radius of the ring to the half-width of the jet at the ring 
location, rring/lIis, is 0.71. Initially, at  x / D j  = 11, the mean profile has a peak above the 
ring. The peaks on the circumference then expand and merge and the profile becomes 
close to that of the heated jet. The r.m.s. temperature profiles (figure 6b)  are relatively 
flat and the shape does not change significantly for x / D j  > 13. In the self-similar region 
their value is slightly lower than the data of Dowling & Dimotakis (1990). 

In figure 7 we show the mean profiles for the very small ring (2 mm diameter) which 
was intended to approximate a point source. The ring was placed at x / D j  = 9, on the 
jet centreline. The radial distance has been normalized by the half-width of each profile. 
For all the downstream locations the profiles appear to be self-similar and close to 
Gaussian, although there is some scatter. Gaussian profiles have also been found for 
a line source of the centreline of a plane jet (Paranthoen et al. 1988). They are observed 
because close to the jet centreline the flow is approximately homogeneous and the mean 
shear is small. The half-width of these mean profiles, g ,  normalized by the jet half- 
width at x / D j  = 9, are plotted against the distance from the source in figure 8 (a).  Also 
plotted the half-width for the 10 mm ring placed at x / D j  = 9. It is essentially the same 
as for the point source for (x -xr ing) /Dj  > 2. The initial linear growth (from 
(x -xTing) /Dj  = 1 to 3) is similar to that for the turbulent-convective range of 
dispersion in isotropic turbulence. In this range, K / ( u ' )  + t + t ,  (Taylor 1921 ; Anand 
& Pope 1985; Warhaft 1984; Stapountzis et al. 1986), where t,, t and v are the 
Lagrangian timescale, the diffusion time and the fluctuation velocity component in the 
cross-stream direction respectively. Here the diffusion time is small so the Lagrangian 
velocities are almost perfectly correlated, thus CT - t. Beyond (x -xr ing) /Dj  = 5 ,  the 
half-width increases as (x-xring)O.' - to.'. This is the same spreading rate as the 
turbulent-diffusive range ( t  + t,) in stationary isotropic turbulence (Taylor 1921 ; 
Warhaft 1984; Anand & Pope 1985; Stapountzis et al. 1986). It needs to be 
emphasized that in evolving flows such as free shear flows and decaying grid 
turbulence, turbulence disperses the scalar as well as its own lengthscale (Tennekes & 
Lumley 1972). Therefore, once the integral lengthscale of the scalar grows to the same 
order of the velocity field, it keeps pace with the velocity. Thus the observed growth of 
the half-width for (x -xr ing) /Dj  > 5,  in a way consistent with the turbulent diffusion 
range, is really due to the growth of the integral scale of the velocity field which also 
spreads at since U, - x-'. Note that the diffusion time, t ,  from the position of the 
ring to (x-xring)/Di  = 5 (where the slope changes from 1 to O S ) ,  is approximately one 
eddy turnover time, 7,  defined as l / ( ~ ' ) ~ / '  where Z is the integral lengthscale. 
The diffusion time measured in eddy turnover time units ( t / 7 )  is determined as s $Ti g ( (u2)1 '2/1)dx/U,(x) ,  where 1 is taken to be Z1,'.) Thus the dispersion is rapid. The 

evolution of the peak mean temperature for the point source is plotted in figure 8 (b) ,  
which shows a two-stage power law decay. This is to be expected because the plume 
half-width has two stages of growth and the heat flux must be conserved. The decay 

turnover time units. (b) The evolution of the centreline mean temperature for the point source. Same 
flow conditions as (a). (c) The half-width of the mean profiles for various rings placed at x / D ,  = 9 
(Uj  = 9 m s-l, Di = 30 mm). The half-width at each downstream position has been normalized by 
that of the heated jet at the same location. The ring diameters are: 0, 10 mm; 0 , 2 0  mm; A, 30 mm; 
0, 40 mm. These are compared with the same point source (+) as in (a). 
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FIGURE 9. The evolution of the cross-correlation coefficient, p, as a function of x / D ,  and t /r ,  for 
the jet with two rings compared with two line sources in grid turbulence. For the rings in the jet, 
0, = 30 mm, U, = 9 m s-l and the ring pairs were placed at x / D ,  = 9. Their diameters were: 0,  35, 
40 mm; ., 20,40 mm; 0, 10, 15 mm; 0, 10, 30 mm. For the grid turbulence the mean velocity was 
7 m s-', and the wires were placed at x / M  = 20, where M (2.54 cm) is the grid mesh size, and the wire 
spacing is in terms of the integral scale of the turbulence, 1. For these measurements the plot is as a 
function of t / r  only. The normalized wire spacing, d/ l ,  was: ---, 0.12; 0.24; -, 0.39; 

, 0.78. ~ _ _  

exponent for the turbulent-convective range is approximately 1.5. (In a flow with a 
constant mean velocity such as grid turbulence, this decay exponent would be -2, 
indicated by a solid line in the figure.) Farther downstream, the decay exponent 
becomes - 1, the same as that of a heated jet (with different origin). Paranthoen et al. 
1988) also observed a two-stage power law decay for a line source in a plane jet. The 
half-width for rings of different sizes, normalized by those of the heated jet, are shown 
in figure 8 (c). For larger rings the half-width is greater than for the smaller ones since 
the large ring is located in the shear layer so the thermal wakes are dispersed faster. 
This is consistent with the observation that the mean and r.m.s. temperature also 
approaches that of the heated jet more quickly (figures 4 and 5). Note that for 
the 40 mm ring the half-width is very close to 1 (i.e. to that that of the heated jet) by 
x / D j  = 17. Although the power input to the smaller rings did not allow us to 
measure further downstream, we expect that these half-widths would also approach 
that of the heated jet. 

3.3. Mixing in the near5eld 
We now turn to the mixing of two scalars introduced independently into the jet. As 
discussed in the introduction, we divided the mixing into two stages, which are defined 
in terms of the correlation coefficient, p, between the two scalars. We begin with the 
near field ( p  < 1) and use the inference method of Warhaft (1981, 1984) to determine 
p. Here two heated rings are placed in the jet as sources of temperature fluctuations 
(figure 1). In order to determine the mixing, the measurement procedure needs to 
resolve the smallest scale in the flow for both scalars simultaneously. This is normally 
difficult to achieve since it requires two sensors (one for each scalar) that can measure 
to the Kolmogorov-Corrsin (or Batchelor) scale, and their separation must also not be 
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FIGURE 10. Transverse profiles of p for the 10, 15 mm ring pair (a) and the 35, 40 mm ring pair 
(b). Dj  = 30 mm, U, = 9 m s-l and the ring pairs were placed at x / D j  = 9. The various downstream 
distances where the profiles were measured are: 0, x / D ,  = 10; U, x / D ,  = 11; 0, x / D ,  = 13; A, 
x / D ,  = 15. The arrows show the radial positions of the rings. 

bigger than these scales. The inference method, on the other hand, only requires the 
fine-scale measurement of one scalar (in this case temperature). It relies on the 
superposition of passive scalars (due to the linearity of the scalar diffusion equation) 
to determine the second-order statistics such as the covariance, (6 ,  6,) ,  and the co- 
spectrum. The method is outlined in the introduction, and in Warhaft (1981, 1984). 
Note that while the cross-correlation and coherence can be determined by this method, 
phase information is lost (since the measurements are not simultaneous) and thus the 
phase spectrum cannot be determined. Figure 9 shows the correlation coefficient of 
temperature fluctuation 6, and O,, p = ( f l A ,  6 , ) / ( (6: )  (6:)) l iz ,  along the jet 
centreline, for different combinations of ring diameters. The results from line sources 
in grid turbulence from Warhaft (1984) are also plotted for comparison. The distance 
from the sources is measured in eddy turnover time units, t / 7 ,  as well as in terms of 
x / D j .  The correlation approaches unity, where the scalars are well mixed, for all cases. 
For the 10, 15 mm and 35,40 mm ring pairs, the difference between the ring diameters, 
Ar, is small (Ar/ l l , z  = 0.167). Here p attains high values very fast, especially for the 35, 
40 mm pair, where p is 0.65 by t = 0.257. But for the large spacing, Ar/ll ,2 = 0.51 (10, 
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FIGURE 11. The segregation parameter, a, for various ring combinations in the jet (a) and in grid- 
generated turbulence, (b). The initial conditions and the symbols for the ring diameters are the same 
as for figure 9. 

30 mm and 20, 40 mm ring pairs) p starts from close to zero and becomes negative 
before increasing towards unity. Here the thermal wakes are initially flapped in unison 
(producing negative correlation) before mixing produces the positive correlation. For 
all cases, the scalars are well mixed in the order of one eddy turnover time, which is also 
the period of rapid dispersion of a single scalar, as shown in $3.2. The qualitative 
evolution of p is similar to the observations of Warhaft (1984) in grid turbulence, also 
shown in figure 9. However, for the jet p evolves faster than in grid turbulence for 
comparable source separations. This is apparently due to the action of mean shear. 
Kerstein (1992) using his linear eddy model finds trends in p very similar to those 
shown in figure 9, but the evolution time is much longer. 

Typical transverse profiles of p are shown in figures 10(a) and 10(b) respectively for 
the 10, 15 mm ring pair and the 35,40 mm ring pair. In figure lO(a), close to the rings, 
p increases towards the edge of the jet, suggesting better mixing due to the shear. 
Farther downstream the profiles become flat and the correlation is close to unity across 
the jet. For large ring diameters, measurements at x / D j  = 10 show a minimum p at 
r / x  = 0.07 (figure lob), which is approximately the radial position of the ring wires 
(indicated by the arrows in the figure). This shows that there is weak mixing close to 
the sources. Apparently, the high initial correlation observed on the centreline for this 
case (figure lob) is because it is physically farther from the sources, and thus the scalars 
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have time to partially mix before they reach the centreline. Note that the minimum 
values of p on the transverse profiles at x / D j  = 10 for small (10, 15 mm, figure 10a) and 
large ring pairs (35, 40 mm, figure lob) are -0.1 and 0.2 respectively, indicating that 
the scalars are better mixed close to the sources for large rings at  the same downstream 
location, owing to the presence of mean shear. Komori et al. (1991) also found that the 
shear increased mixing in their simulations based on a random flight model. 

As discussed in the Introduction, another important parameter in turbulent mixing 
is the segregation parameter, a, defined as (8,8,)/T, T,. Figure 11 (a) shows a along 
the jet centreline for the four different ring combinations for which p was measured 
(figures 9 and 10). Data calculated from Warhaft (1984) are given in figure 11 (b)  for 
comparison. For the jet experiments, we expect that a will approach an asymptotic 
value of approximately 0.04, since (8’)”’’/lT, + 0.2 (figure 5 )  and p + 1. The asymptotic 
trend of our measurements (figure 11 a) is consistent with this value. In a similar way 
to p, a also has higher values for small Ar/Z1,’ (figure l l a ) .  But the evolution of a, 
especially close to the rings, is different for small (10, 15 mm) and large (35, 40 mm) 
ring diameters. For the 35, 40 mm ring pair, a is initially very high, owing to the large 
temperature fluctuation intensity close to the rings. It then drops and approaches its 
asymptotic value. For the 10, 15 mm ring pair, a increases initially and then decreases. 
The curves for a in grid turbulence (figure 11 b) have similar shapes to the small ring 
(10, 15 mm and 10, 30 mm) cases in the jet, but the development is slower. They take 
37 to 3.57 to reach their asymptotic value of 0.2 compared to about 1.57 for the jet. In 
figures 12(a) and 12(b) the transverse profiles of ct are plotted at  several downstream 
locations. Close to the rings, in a similar way to the correlation coefficient (figure lo), 
a is higher towards the edge, but the profile does not become flat far downstream since, 
although p is unity across the whole jet, the temperature fluctuation intensity is higher 
in the shear layer than at the centre. 

Komori et al. (1991), using a random flight model, find that a + 0 with time in non- 
premixed homogeneous turbulence (a  is - 1 initially). This result is not inconsistent 
with our asymptotic value of 0.04, although we emphasize that the asymptotic value 
of a is dependent on the type of flow (unlike p). There have been other determinations 
of a in grid turbulence (Bennani, Gence & Mathieu 1985), in counterflowing jets 
(Mudford & Bilger 1984), and in a two-dimensional plume in the atmospheric surface 
layer (Komori, Ueda & Tsukushi 1985). In these studies the asymptotic values of a 
varied from slightly negative values, to -0.7. The simulations of Komori et al. (1991) 
as well as the theoretical considerations of Bilger, Mudford & Atkinson (1985) indicate 
that a can be positive, as our experiments also show. 

The correlation coefficient and segregation parameter provide a bulk measure of 
mixing, but contain no scale information. However, mixing is a decidedly multi-scale 
process, with turbulence acting at the large and intermediate scales, and molecular 
diffusion smearing and completing the mixing at the smallest scales. Thus the 
correlation can become positive only when the scalars are mixed at molecular level, 
because otherwise ((q +8,)(TB+8,)) = 0, and thus (0, 0,) is negative. Therefore, 
studying the mixing at  different scales is necessary for a complete understanding of the 
mixing process. The scale information of the correlation as a function of wavenumber 
(or frequency, which is used here) can be obtained from the coherence of the 
two scalars. This was calculated by inferring the co-spectrum from the power spectra 
for each ring (~D~,(fl and cDO,(f)) and both rings operating together, OOA+,(f), i.e. 

The coherency spectra, p(f)  = Coo,,,(f)/[cD0,(f) @OB(f)]l”, and co-spectra for the 
10,20 mm ring pair measured at different downstream locations along the jet centreline 

Cos,e,(f) = P”s,,,(f) - @ B , ( f )  - @OB(f)l/2. 
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FIGURE 12. The transverse profiles of a for two sets of ring pairs: (a) 10, 15mm diameter rings 
and (b) 35, 40 mm diameter rings. D, = 30 mm, U, = 9 m s-' and the rings were at x / D j  = 9. The 
measurement locations were: 0, x / D ,  = 11; 0, x / D j  = 13; x ,  x / D j  = 15. The arrows show the 
radial positions of the rings. 

are plotted in figures 13 (a)  and 13 (b) respectively. Close to the sources ( x / D j  = 9.5) the 
two thermal wakes are unmixed and the probe sees unheated air most of the time, and 
p(f) is close to zero at all scales. As they are convected downstream the scalars are 
flapped and stirred by the large-scale motion and the probe spends a considerable 
fraction of time in one scalar field or the other, but not generally in both fields together, 
since they are poorly mixed. This produces a negative coherence (of value of 
approximately -0.55 at x / D j  = 10) at low frequencies. Since the structure of the 
temperature field is coarse at this point, p(f)  is still close to zero at the small scales. As 
the scalar fields evolve, their structure becomes finer, i.e. the coherence is transferred 
to the small scales. Thus the small scales, like the large ones, become negatively 
correlated. Here, too, the probe is mainly sampling one scalar or the other but rarely 
both together ( x / D j  = 10.3). Farther downstream, while p(f) is still decreasing at the 
small scales, the entrainment of the ambient air by the jet starts to produce similar 
structures in both scalar fields, and thus p(f) tends towards positive values at large 
scales ( x / D j  varying from 10.3 to 11, figure 13(a)). The positive coherence is then 
transferred to the small scales and finally p(f), approaches unity at all scales ( x / D j  = 
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FIGURE 13. The coherence (a), and amplitude co-spectrum (b), for the 10, 20 mm ring pair placed 
at x / D ,  = 9. D, = 30 mm, U, = 9 m s-l. The measurements at various x / D ,  were along the jet 
centreline. The measurement positions (x /D, )  are given on the graphs. l,,, is the jet half-width andf 
is frequency (Hz). 

16). We see that in the evolution of pcf), the small scales lag behind the large scales. 
This is especially evident for x / D j  between 10.7 and 14. The co-spectra are shown in 
figure 13 (b). The integral of the co-spectrum is the cross-correlation coefficient, p. For 
x / D j  < 10 and > 12, the co-spectrum has the same sign at all frequencies. Here the 
contribution to p is mostly from large scales. Thus in these ranges p (figure 9) evolves 
in a similar way to p(f) and the co-spectrum at large scales (low frequencies). However, 
for the intermediate range ( x / D j  - 11) the co-spectrum changes sign and the value of 
p is influenced by both large and small scales. The evolution of the coherence for 
different ring sizes, and along a ray at an angle with the centreline (not shown here), 
follows the same qualitative course as figure 13. 

While our main focus is on mixing of scalars introduced into the jet in the self-similar 
region, and at the same downstream location, we also present in figure 14 some results 
for cases with different initial conditions. These are: (a)  the mixing of temperature 
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FIGURE 14. The downstream evolution of p for various other initial conditions: 0, 10, 20mm 
rings placed close to the jet at x / D j  = 0.5; 0, a 20 mm diameter ring at x /D ,  = 2 and a 30 mm 
diameter ring at x / D j  = 7; 0, a 30 mm diameter ring at x / D ,  = 7 mixing with the heated jet. 
D j  = 30 mm, U, = 9 m s-I. 

fluctuations from two rings placed close to the jet exit; (b) two rings separated 
longitudinally; and (c) fluctuations produced by one ring and the heated jet. The 
evolution of p for the 10, 20 mm ring pair close to the jet exit ( x / D j  = 0.5) is similar 
to the cases shown in figure 9 for the rings in the self-similar region: initially the thin 
thermal fields from the two sources are flapped, causing the negative cross-correlation, 
and by x / D j  = 5 the mixing process begins, driving p to positive values. For the case 
of two rings with large separation in the streamwise direction (the first ring at x / D j  = 2 
and the second at 7), the distance between the rings is larger than the integral 
lengthscale. Immediately downstream of the second ring the correlation of the two 
scalars is close to zero (figure 14). This is to be expected because, at the location of the 
second ring, the two thermal fields are in different stages of evolution, and thus their 
characteristic scales are quite different. The thermal field of the first ring is 
comparatively well developed and its fluctuations are mainly due to the entrainment of 
ambient air and turbulent stirring by the time it reaches the second ring. The thin 
thermal wake from the second ring, flapped by the large-scale motion, then encounters 
this well-mixed plume. Thus the thin thermal wake is quite independent of the well- 
mixed plume from the first ring, which is of scale 1, and a zero cross-correlation thereby 
results. Farther downstream p increases monotonically, in a similar way to the cases we 
discussed before. Finally, in figure 14 we show the variation of p for the case of one ring 
placed at x / D j  = 7 in the heated jet. This situation is nearly identical to the case of the 
separated rings just discussed since, at the location of the ring, the heated jet is also 
relatively well mixed. Note the remarkable similarity of the evolution of p for the very 
different initial conditions of figure 14. 

Finally, we note that mixing does not necessarily result in a positive correlation. In 
the case of two plumes in a jet or two line sources in grid turbulence, the 
uncontaminated (or unheated) ambient air is essential for both p and a to become 
positive. It can easily be shown that for a non-premixed ( p  = - 1) non-reacting flow 
containing two adjacent scalar fields, p remains - 1 for all time. Komori et al. (1991) 
have shown that - 1 < a < 0 for this case. In the case of dilute homogeneous scalar 
fields with equal Prandtl (or Schmidt) numbers, the evolution of the correlation 
coefficient depends on the correlation at large and small scales (Yeung & Pope 1993). 
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FIGURE 15. The p.d.f.’s of temperature fluctuations. The upper curves (shifted by two decades 
from the lower) are for a 10 mm ring placed at x /D,  = 0.5 (0, = 30 mm. Uj = 9 m s-l). The 
measurement locations are: 0, x /D,  = 10; m, x /D ,  = 15. The lower curves are for the heated jet: 
A and 0, measurements at x /D,  = 24 and x /D ,  = 40 respectively (D, = 15 mm, U, = 18 m s-l). The 
solid lines are Gaussian curves and all measurements are along the jet centreline. 

For flows with fast (large Damkohler numbers) irreversible chemical reaction, the two 
scalars cannot coexist, therefore both a and p will remain negative. 

3.4 Mixing in the farJield 
We have shown that as the temperature field introduced by the rings evolves, by about 
1.5 eddy turnover times the mean and r.m.s. profiles become close to those of a self- 
similar heated jet. Here the thermal field has become independent of its initial 
conditions. By this position, if two scalars are introduced upstream (by means of two 
rings), they have become fully mixed with each other @ = 1). We define the far field 
of mixing as that region when p is unity. Here the mixing is between the heated jet and 
the cooler, ambient air. 

Figure 15 shows the p.d.f.’s of temperature fluctuations on the jet centreline for the 
10 mm ring placed at x / D j  = 0.5 in the 30 mm jet (i.e. very close to the jet exit), and 
for the 15 mm heated jet. Initially the p.d.f.’s are skewed in different ways. The ring has 
the expected extended tail (measured at x / D j  = 10) on the hot side (because of the hot 
spike at the ring), while the heated jet has its longer tail (measured at x / D j  = 24) on the 
cold side (due to the entrainment). However, farther downstream the p.d.f.’s are almost 
identical, and close to Gaussian (measured at x / D j  = 15 for the ring and x / D j  = 40 
for the heated jet). Other initial conditions produced similar results. Figure 16 
shows temperature p.d.f.’s off the jet centreline, in the far field. Both the heated jet and 
the ring produce p.d.f.’s that are skewed to the high-temperature side, showing that 
gusts of warm air from the jet are more probable than cool gusts of the same magnitude 
from the surroundings. These findings are consistent with the measurements of 
Venkataramani, Tutu & Chevray (1975) and Lockwood & Moneib (1980). We note 
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FIGURE 16. P.d.f.’s of the heated ring and the heated jet, off the centreline at r / x  = 0.11. 0, 
heated jet measured at x / D j  = 40; 0, heated ring (15 mm diameter placed at x / D j  = 4) measured at 
x / D j  = 40. Dj = 15 mm, Uj = 18 m s-l. The solid curve is Gaussian. 

that Sreenivasan, Antonia & Britz (1979) showed, in their heated jet experiment with 
co-flow, that off the jet centreline the p.d.f. of 8 corresponded to ‘superposed’ 
turbulence, i.e. the temperature signal obtained by subtracting the rampcliff structures 
(to be discussed later in this section and in $4) from the total signal was close to 
Gaussian. The typical instantaneous cross-stream scalar profiles, observed by Dahm & 
Dimotakis (1987) in water jets and by Uberoi & Singh (1975), Schefer et al. (1994) and 
Kerstein & Schefer (1994) in gaseous jets, show that the instantaneous concentrations 
of mixed fluid across the jet are often fairly uniform but with sharp edges, in contrast 
to what the mean profile might suggest. This is probably directly related to the 
rampcliff structure, providing a different perspective of the same object. This suggests 
that in regions separated by ‘cliffs’ the scalar is well mixed and the non-Gaussian p.d.f. 
is caused by these large-scale structures. 

The spectra of the longitudinal velocity and temperature fluctuations in the far field 
are shown in figure 17. Here we have multiplied the ordinate of the raw spectra byf” 
wherefis the frequency and n is the scaling exponent. This method of plotting clearly 
displays the scaling region. The velocity and temperature spectra have scaling 
exponents of - 1.47 and - 1.37 respectively, extending a little more than a decade in 
frequency space. The temperature spectrum exponent at this R,( - 200) is consistent 
with the results compiled by Sreenivasan (1991). We have not been able to find other 
measurements of the velocity spectrum at R, - 200. The jet results of Gibson (1962) 
at R, = 750, and Champagne (1978) at R, = 600, show a -5/3 scaling region. Our 
lower scaling exponent apparently reflects the lower R, of the measurements. 

The statistics of temperature fluctuations, 8, and their difference, A8, for the far field 
are given in table 2, and some of these are plotted in figures 18 and 19, to be discussed 
in a moment. The values of the skewness and kurtosis of 8 (normalized third and fourth 
moments) are consistent with the previous results of Venkataramani et al. (1975) and 
Lockwood & Moneib (1980). They show no trend with Reynolds number. The 
temperature difference was measured in two directions : in the radial direction and 70” 
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FIGURE 17. Temperature (upper curve) and velocity spectra measured in the far field of the scalar 
evolution. D, = 15 mm, U, = 18 m s-l and the measurements were at  x / D j  = 40 for the heated jet. 
The numbers show the scaling exponents. 
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-1.2 12 0.12 
-0.98 10 0.03 
-0.95 11 0.28 
-1.1 12 0.29 
-0.9 8.6 0.45 
-0.9 9.5 0.59 
-0.61 6 0.51 
-0.85 8 0.83 
-0.9 11 0.5 
-0.97 11.5 0.57 

- 0.14 
0.11 

- 0.64 
0.9 

- 

- 

Ps2. ( ~ 8 ) ~  

0.02 
0.039 
0.002 
0.053 
0.02 
0.07 
0.04 
0.06 
0.04 
0.015 
0.05 
0.06 
0.09 
0.12 
0.12 
0.16 
0.06 
0.1 
0.03 
0.02 
0.1 
0.16 

P S ,  (At))' 

-0.01 
- 0.075 
-0.016 
- 0.064 
- 0.05 
- 0.06 

0.07 
0.06 
0.02 

-0.045 
0.06 
0.09 
0.08 
0.14 
0.09 
0.16 
0.05 
0.12 

- 0.07 
- 0.08 

0.1 
0.15 

TABLE 2. Temperature statistics. Here 0 is the temperature fluctuation, A0 is the temperature 
difference, S and K are the skewness and kurtosis respectively, pt)2,(At))2 is the correlation coefficient 
between 0' and (AO)', and pB,(A6~ is the correlation coefficient between 0 and pp is a correlation 
function defined as (02(A0)2)/((02) ((A@)'))- 1 (see text). The radial position of the probe is r / x  and 
the probe angle is measured from the radial plane (see figure 20 for sketches). 
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FIGURE 18. Higher-order statistics for the temperature difference, AO, as a function of the jet Reynolds 
number. Upper points, the kurtosis; lower points, the skewness: x , centreline measurements with 
the probe spacing in the radial plane; a, centreline with probe oriented 70" from the radial plane; 
0, off centreline, r / x  = 0.15, 0" orientation; 0, off centreline, r / x  = 0.15, 70" orientation (see also 
figure 20 for probe position and table 2 for flow conditions). All measurements were in heated jets. 

from the radial direction in the plane containing the radius and centreline. Ideally we 
would have liked to measure the difference at 90" from the radial direction, i.e. in the 
x-direction, but probe interference precludes this. The 70" compromise was chosen 
because this was the largest angle that could be used without noticeable probe 
interference. 

In figure 18 we have plotted the data from table 2 of the skewness and kurtosis of 
the temperature difference measurements, for various probe orientations and positions, 
as a function of Reynolds number. The skewness data appear to show a slight upward 
trend with Reynolds number although the range is limited and the trend may be due 
to scatter. Their average value of around -0.8 is consistent with numerous other 
measurements in shear flows (Sreenivasan 1991). Recently it has been shown (Holzer 
& Siggia 1994; Tong & Warhaft 1994b) that even in grid-generated turbulence, where 
there is no shear or apparent large-scale structure, the skewness is also of order one and 
constant (over a grid mesh Reynolds number varying from 5 x lo3 to 57 x lo3). Thus 
the derivative skewness is a basic characteristic of all turbulent flows, not confined to 
those with shear and coherent structures. Notice that the kurtosis (figure 18) shows the 
expected increase with Reynolds number as the small-scale internal intermittency 
increases. 

In figure 19(a) we have plotted the cross-correlation between the square of the signal, 
02, and the square of the temperature difference, the latter being proportional to 
the components of the scalar dissipation, .((aO/ax,) (aO/ax,)). This correlation, 
pHz, is small for centreline values, but becomes significant for the off-centreline 
position ( r / x  = 0.15), and particularly for the temperature difference measured at 70" 
to the radial direction. There is a definite downward trend with Rej, as would be 
expected, since as the Reynolds number increases so does the separation of scales. Thus 
small and large scales should become less correlated. A log-log plot of the data (not 
shown) shows an approximately dependence, suggesting that the data are not 
inconsistent with high-Reynolds-number scaling. Similar trends are found for pe, ( A e ) ~  

(table 2, not plotted). Anselmet & Antonia (1985) also measuredpOz, ( A . f l ) ~  in a plane jet but 
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FIGURE 19. (a) The correlation coefficient between the square of the temperature fluctuations, O', 
and the square of the temperature difference, (AO)'. (b)  The correlation function pp = (02(AO)2)/((02) 
((AS)z))- 1. The symbols and flow conditions are the same as in figure 18. 

for one Reynolds number only (R, = 160), and obtained a value similar to our results. 
On the other hand, Djeridi (1992) found a value of 0.5 in their round jet with co-flow. 
The reason for this discrepancy is unclear. Another measure of the correlation between 
the large- and small-scale temperature fluctuations, defined as pp = (Ozce,)/ 
((0') (qJ)- 1 was used by Eswaran & Pope (1988), and this is plotted in figure 19(b). 
This is not strictly a correlation coefficient but if O2 and ee, are independent, pp is zero. 
The trend of p p  is similar to that of pO2, ( A 8 ) ~ ,  but the magnitude is larger. Here the dow- 
nward trend with Rej is evident even for the values measured along the jet centreline. 
The results of figure 19 suggest that p 8 ~ , ( A o ) ~  and pp tend to zero asymptotically as Rej 
becomes large. Conventional Kolmogorov theory would also indicate this. We note, 
however, because of the presence of the rampcliff structures (and hence the non-zero 
derivative skewness), that even at very high Re there may still be a slight residual 
correlation between the large and small scales, particularly off the jet centreline. 

We now present some conditional statistics of the scalar as well as the velocity field. 
First we discuss the expectation of the scalar dissipation rate conditioned on the scalar 
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fluctuations, x,, = ((a8/ax,) (a8/axi) 18). This is a quantity of interest because it is a 
crucial term to be modelled in the one-point scalar p.d.f. evolution equation. The 
general equation for the p.d.f. of scalar fluctuations, 8, is given by Sahay & O'Brien 
(1993): 

a 
at ae p + u. V P  + v . ( F P )  - 1 ,p . V@) P] = 

Here P C8;x, t )  is the one-Doint D.d.f. of the 

A[(E+U-V@-DV2@ ae at  

scalar fluctuation, x,,(8; x, t )  and 
F(8;  x, t )  are the expectation bf the 'square of the scalar gradient and th"e fluctuating 
velocity conditioned on scalar fluctuations respectively, U(x, t )  and @(x, t )  are mean 
velocity and mean scalar fields. The term containing xt, represents molecular diffusion 
in &space, which is key to the evolution of the scalar p.d.f. For the case of a homo- 
geneous velocity and scalar field it is the only unclosed term (Eswaran & Pope 1988). 
Also, x, indicates the level of the correlation between the scalar fluctuations and its 
dissipatlaon. It can be shown that the independence of xEo of the magnitude of scalar 
fluctuations is a necessary and sufficient condition for the scalar p.d.f. to be Gaussian 
(Pope 1985; O'Brien 1991). Moreover, x,, is an important quantity in the analysis 
of turbulent diffusion flames. In the case of a one-step irreversible fast-chemistry 
reaction, the mean reaction (chemical production) rate is proportional to the 
expectation of the scalar dissipation conditioned on the stoichiometric mixture fraction 
(Bilger 1989). 

In the present experiment we determined the conditional expectation of single 
components of the temperature dissipation only. Thus we evaluated ((A8)21 O), where 
A8 was determined in the radial direction and at 45" and 70" to this direction. (The 
measurements in the azimuthal direction were done at one location, r / x  = 0.15, where 
r is the distance from the jet centreline.) The results of these one-component 
conditional scalar dissipation measurements normalized by ( are shown in figure 
20. On the jet centreline (figure 20a), ((AO)2~8),o is nearly independent of 8 / g o  for 
(O/goJ < 3, where go is the r.m.s. value of 8. (The departure from unity for 18/gol > 3 
appears to be due to statistical uncertainty.) Here the subscript is the angle between the 
two temperature probes and the radial direction (see the sketches in figures). However, 
when the jet centreline temperature derivative was determined with a significant 
longitudinal component, the results show a qualitative change (figure 20 a). Thus 
((A8)21 O),,, is not flat, but has large values associated with large negative temperature 
fluctuations. This directional dependence is probably due to rare thin and possibly 
sheet-like structures associated with the entrainment of the cold ambient fluid, causing 
sharp scalar gradients with a strong component in the streamwise direction. As the 
probes are moved towards the edge of the jet ( r / x  = 0.1 1 and 0.15), 8), 
increases significantly with positive 8 (figure 20 c), indicating that the large positive 
fluctuations from the centre of the jet are associated with higher scalar dissipation. Also 
plotted in figure 20(c) is the conditional expectation at r / x  = 0.15 for the probe 
separation in the azimuthal direction. Here the shape is similar to the 0" case, 
indicating that there is no directional dependence within the radial plane. Finally, in 
figure 20(d) we have plotted ((A8)210),,o for the same off centreline locations as in 
figure 20(c). Here the conditional expectation becomes U-shaped as r increases. The 
left-hand lobe appears to be associated with the entrainment mechanism observed in 
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figure 20(b) for the same probe orientation on the jet centreline. The right-hand lobe, 
associated with large temperature fluctuations originating at the centreline of the jet, 
is similar to the lobe observed in figure 20(c) for the probe separation in the radial and 
azimuthal directions. Unlike the entrainment mechanism which appears to be highly 
angle dependent, the right-hand lobe is independent of probe separation direction, only 
depending on r, the distance from the jet centreline. 

The measurements for the conditional expectation of ( A I ~ ) ~  were done at the highest 
Reynolds number (Rej  = 18000, Re, = 2600). It is important to note that even at this 
high Re there is a significant dependence of on 8 (particularly when the probe 
angle is 70°), even though p8~,(48)~ is very close to zero (figure 19a). This shows that 
((A19)~18) is a more sensitive indicator of the dependence of the small scales on the large 
scales than is the cross-correlation coefficient. 

Our results for the conditional expectation of (A@' appear to be at variance with 
those obtained by Kailasnath, Sreenivasan & Saylor (1993) in water jets. Their results 
(figure 5 of their paper) show that both ((ac/ax)' I c) and ((ac/ar>'I c) increase with the 
concentration fluctuations, c. Although the Schmidt number, Sc, in their experiments 
is approximately 600, they argued that their results for the high-Schmidt-number flow, 
if resolved only to the Kolmogorov scale, could be interpretated as having unity Sc (or 
Pr). This would be the case if the mixing process followed the classical cascade picture, 
i.e. with molecular mixing taking place at the smallest scale and its rate being 
independent of the value of the molecular diffusivity. However, the Schmidt number 
is known to influence the mixing rate in shear flows even at high Reynolds numbers 
(Broadwell & Breidenthal 1982; Broadwell & Mungal 1988, 1991). Broadwell & 
Mungal(l991) pointed out that the diffusion layer between the jet and ambient fluid, 
which has a thickness 6, - l/(ScRe)'/' (Broadwell 1989), contributes a significant 
amount to the mixing rate in gaseous jets, while the contribution is negligible for high- 
Schmidt-number flows. This is because the thickness of the diffusion layer decreases 
with the molecular diffusivity. Also, as discussed above, in flows with a mean scalar 
gradient, there exist ' rampcliff'-type structures in the scalar field over which there is 
a scalar level jump of order (d2)l/'. Tong & Warhaft (1994b) have shown that the 
average cliff thickness, 6, is of order ( ~ l / u ) ' ' ~ .  This varies with Schmidt number (for 
Sc - 1,6 is of the order of the Taylor microscale A). Thus the contributions to the scalar 
difference at the Kolmogorov scale, from both the diffusion layers and the rampcliff 
structures, depend on the molecular diffusivity. Therefore, it is unclear how to interpret 
results only resolved to the Kolmogorov scale for high Schmidt-number flows. 

There are some theoretical predictions of the relation between scalar p.d.f. and the 
conditional dissipation. Sinai & Yakhot (1989) obtained a relation for a homogeneous 
decaying passive scalar without a mean gradient, expressing the limiting normalized 
scalar p.d.f. (t+m) in terms of xco: 

Here 8 is the normalized scalar fluctuation (ae = 1). A more general formula, relating 
the p.d.f. of any (normalized) stationary process, X(t) ,  and the conditional expectation 
of the square of its time derivative, (J?lx), was derived by Pope & Ching (1993): 
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FIGURE 20(a, b). For caption see facing page. 

Here the overdot indicates a time derivative. Pope & Ching (1993) pointed out that ( 3 )  
and (4) are formally the same if 

While ( 5 )  must be valid for a decaying homogeneous isotropic scalar field (note that 
for a homogeneous scalar field, the time derivative can be replaced by spatial 
derivative), it is worthwhile asking whether ( 5 )  is valid for more general flows. If so, 
then ( 3 )  could be used to close the p.d.f. equation. A few recent experiments have 
indicated that ( 5 )  may be a good assumption even for non-Gaussian process. Thus 
Pope & Ching (1993) computed ( (a20/at2)  I O ) / ( @ O / a t ) ' )  from the Chicago convection 
data and found good agreement with (5) .  Further measurements in grid turbulence 
with a linear temperature profile by Jayesh in our research group (private 

( Y I x ) / ( P )  = -x. ( 5 )  
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FIGURE 20. The conditional expectation of on 8, normalized by the variance of the difference, 
CT& and the r.m.s. temperature, ue, respectively. The probe orientation and position is sketched on the 
pictures. (a) Measurements on the jet centreline at x / D ,  = 40 with probe spacing in the radial plane: 
0, heated jet (0, = 15 mm, U, = 18 m ssl); x ,  heated 15 mm ring placed at x / D ,  = 4 (D ,  = 15 mm, 
U, = 9 m s-'); 0, heated 15 mm ring placed at x / D ,  = 4 (D,  = 15 mm, Uj = 18 m s-l); (b)  Centreline 
measurements with the probe orientation varied. For all cases D, = 15 mm, U, = 18 m s-' and the 
measurements were at x / D ,  = 40: 0, heated ring, 0" orientation; 0, heated ring 45"; A, heated 
ring 70"; x , heated jet 45"; +, heated jet 70". The heated ring was of 15 mm diameter placed at 
x / D j  = 4. ( c )  Off centreline measurements at x / D ,  = 40 with the probe in the radial and azimuthal 
directions: 0, heated ring, probe at r / x  = 0.11, 0"; A, heated ring, probe at r / x  = 0.15, 0"; 0, 
heated ring, probe on the centreline (data from (a) for comparison); x ,  heated ring, probe at 
r / x  = 0.15, azimuthal direction. D, = 15 mm, U, = 18 m s-l and the ring diameter is 15 mm, placed 
at x / D ,  = 4. ( d )  heated ring (15 mm diameter placed at x / D ,  = 4, D, = 15 mm, Uj = 18 m s-l) for a 
probe angle of 70" but with variation of r / x :  0, centreline (same as triangles in b) ;  0, r / x  = 0.11; 
A, r / x  = 0.15. The measurement location was at x / D j  = 40. 
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FIGURE 22. The conditional expectation of fluctuation velocity on 0, normalized by the respective 
r.m.s. values. U, = 18 m s-l and the measurements were at x / D ,  = 40 of the heated jet. The solid lines 
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FIGURE 23. Comparison of the conditional expectation (on 8) of (A8)l and ( d O / a t ) z :  (a) Centreline: 
0 (U, = 9 m s-I) and 0 (U, = 18 m s-'), ((a8/at)z/((a6/at)z) [ $/a,) measured at x / D ,  = 40 for the 
heated ring (diameter 15 mm placed at x / D ,  = 4 with D, = 15 mm); x (U, = 9 m s-I) and + 
(18 m s-l), ((A8)z/n~,~6/a,) for probe at 70" to radial plane, same conditions as for the time 
derivative measurements. (b) Off centreline: 0, ((as/at)z/((a8/at)2)I O/CT,) measured at x / r  = 0.1 1 ,  
compared with ( (A6)2/~ i01  6/u,); + , measured at the same location with a 70" probe orientation. 
D, = 15 mm, U, = 18 m s-l, and the 15 mm ring was at x / D ,  = 4. 

communication) also support the validity of the relationship. However, our present 
work shows some departure. In figure 21 we have plotted 

((a2o1at2) I elgo> ~ 8 l ( ( ~ ~ 1 W 2 )  

as a function of Bla,. While the relation is linear on the jet centreline, it shows 
significant departure for measurements off the centreline, particularly for O/cro > 1 .  
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(Here we return back to the use of 0 as the un-normalized temperature fluctuations.) 
We conjecture that the departure is due to the large-scale intermittency in the off- 
centreline part of the jet, which causes the conditional expectation to become the sum 
of two approximately piecewise linear parts. 

In the one-point scalar p.d.f. transport equation of inhomogeneous turbulent flow 
with mean scalar gradient (equation (2)), besides (esl 0), there exists another unclosed 
term, the expectation of velocity fluctuations conditioned on temperature fluctuations, 
F(4; x, t).  Sahay & O'Brien (1993) propose that this term be modelled as an odd- 
order polynomial for the case of isotropic turbulence with a mean temperature 
gradient, with the conditional p.d.f., P(u I 0), taking the joint normal form. Since for the 
joint normal distribution ( ~ 1 0 )  is linear, the higher-order term models the deviation 
from the joint normal distribution. Figure 22 shows that both ( U I  0) and ( u  10) are 
indeed close to the values for a joint normal distribution between velocity and 
temperature, except for large negative temperature fluctuations. The lines have the 
slope of the correlation coefficient between the fluctuation velocity components and 0. 
The departures of ( ~ 1 0 )  and ( U I  0) from the straight line, associated with cold air, are 
possibly due to the contamination of the hot-wire probe caused by flow reversal. 

Finally, we compare results for the conditional dissipation determined using 
Taylor's hypothesis to direct spatial measurement in the jet. The use of Taylor's 
hypothesis in high-intensity shear flows has been investigated by Lumley (1965), 
Wyngaard & Clifford (1977), Gibson, Friehe & McConnell(1977), Champagne (1978), 
Antonia, Chambers & Phan-Thien (1980), Mi & Antonia (1994) and Zaman & Hussain 
(198 1). Kailasnath et al. (1993) computed the conditional expectation, ((8c/i3x)'l c) 
from their data taken on the jet centreline (at x / D j  = 37) using Taylor's hypothesis, 
and also measured it directly. Their results show departures for positive concentration 
fluctuations. However, contrary to Kailasnath et al. (1993), our results (figure 23) show 
departures for both positive and negative fluctuations. (As noted before, the form of 
((A0)'l 0) of our results is quite different to that of Kailasnath et al.) Both on and off 
the jet centreline, the conditional expectation is underestimated for negative 
temperature fluctuations and overestimated for positive fluctuations. This is because 
the cold air entrained into the jet is accompanied by low streamwise convection 
velocity. 

4. Discussion 
In the far field where the rings produce the (statistically) same scalar field as the 

heated jet, our results have covered a sufficiently broad Reynolds-number range to 
show trends in the kurtosis of the temperature difference, and in the correlation 
between the signal variance and its squared difference. The latter tends to zero at  high 
Reynolds numbers (figure 19) suggesting that we have captured the salient 
characteristics of high-Reynolds-number mixing in a jet. On the other hand, the 
dispersion and mixing for the near field were studied for one Reynolds number only, 
Rei = 18000 (Re, = 2300, R, = 190). However here, for our dispersion experiments, 
we were concerned only with the turbulent convective and diffusive range and not the 
predominantly molecular spreading range that occurs very close to the sources 
(Warhaft 1984). For these ranges the spreading of the scalar does not depend on 
thermal diffusitivity. (The molecular diffusive range was not studied here because the 
size of the wire used for the ring and point sources was larger than the molecular 
diffusive range.) For the case of the mixing of two scalars, the situation is slightly more 
complicated since molecular diffusion is necessary to produce positive p. The time 
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needed for the mixing to reach the molecular level is similar to that for any quantity 
to be transferred from the integral to dissipation scales. Lumley (1992) estimates it as 
21/24 1 - 1.29Re;"'), using the spectral transfer model suggested by Tennekes & 
Lumley (1972). It approaches 21/24 twice the value of the integral timescale of the flow, 
as Re, +a. Thus for Re, = 2300 the second term in the Lumley expression is small, and 
we expect the rate of molecular mixing of the two scalars, as well as the evolution of 
p and p(f), to be independent of the Reynolds number. 

The directional dependence of ((A0)'~O) (figure 20) indicates anisotropy of the small 
scales of the thermal field at second moment level. A commonly used parameter to 
measure the anisotropy at this level is the ratio of the variance of the derivative in two 
directions, e.g. ((ae/ar)z)/((ae/ax)z). Antonia, Anselmet & Chambers (1986~) 
obtained a value of 2 for this ratio on the centreline of a plane jet. In the round jet 
experiment, Antonia & Mi (1993) found the ratio was close to 1 and concluded that 
local isotropy was a better approximation for a round jet than for a plane jet. We too 
find that the derivative variance ratio is close to 1 (measured on the jet centreline at 
x/Dj = 40 for Rej = 18000). Our results (table 2) show, on the other hand, that the 
skewness of the streamwise temperature derivative, which indicates anisotropy at third 
moment level, is approximately the same for both cases: -0.9 for the round jet in the 
present experiment compared with -0.85 for the plane jet (Antonia et al. 1986~) .  Thus 
the third moments appear to be more sensitive indicators of anisotropy than the second 
moments. The contribution to the scalar derivative variance from the rampcliff 
structures, which makes up the difference between ((aO/&)') and ((iM/ax)')>, comes 
from scales larger than those that contribute most to the skewness. Therefore the 
variance ratio tends to be influenced more by large-scale motions. This may explain the 
large variation of ((ae/ar)z)/((ae/ax))z for different flows with similar value of 
skewness. Compared to the complex coherent structures of a round jet, which is 
dominated by axisymmetric and helical modes (Broadwell & Mungal 1991), the 
structures of a plane jet are relatively simple. Here the vortical structures are primarily 
aligned in the spanwise direction (Antonia et al. 19863; Tso & Hussain 1989) and tend 
to produce temperature structures in certain directions, and thus the derivative ratio is 
higher. We note that the variance ratio measures the directional dependence of the 
temperature derivative (rotation) whereas S,, (the derivative skewness in the mean flow 
direction) reveals asymmetry in one direction (reflection). 

The anisotropy and non-zero skewness of the temperature derivative in the shear 
flows has been studied by a number of workers (Mestayer et al. 1976; Gibson et al. 
1977; Sreenivasan et al. 1979; Tavoularis & Corrsin 1981; Mestayer 1982; Antonia et 
al. 1986a, b). It has generally been accepted that the rampcliff-type temperature 
structures observed in such flows, caused by large-scale coherent structures in the 
velocity field, are responsible for the anisotropy and skewness. However non-zero 
skewness was also observed in isotropic grid turbulence with mean temperature 
gradients (Budwig, Tavoularis & Corrsin 1985; Thoroddsen & Van Atta 1993; Tong 
& Warhaft 1994b) and in the DNS of stationary isotropic turbulence with a linear 
scalar profile (Pumir 1994). Tong & Warhaft (1994b) showed that rampcliff structures 
exist in grid turbulence over a wide Reynolds-number range. They found 
((ae/~y)')/((ae/ax))' = 1.5 and So, (the derivative skewness along the mean 
gradient) = 1.8. Here y is the direction of mean gradient. They also showed, as 
mentioned above, that although the mean thickness of these cliffs scaled with Taylor 
microscale A, the contribution to the skewness mainly came from much smaller scales, 
i.e. thinner structures which are possibly embedded in the large structures. Thus the 
non-zero skewness does not depend on any specific type of large-scale structure and is 



34 C. Tong and 2. Warhaft 

inherent to all turbulent flows. It is even observed in two-dimensional simulations of 
a linear mean scalar profile in isotropic turbulence (Holzer & Siggia 1994). 

5 .  Conclusions 
Our experimental study has focused on two broad aspects of passive scalar 

behaviour in a turbulent jet. First, by introducing two scalar fields independently of 
each other, we have observed how they spread from their sources and then mix with 
each other within the jet. An understanding of the mixing of two scalars separated by 
a surrounding medium is very important in atmospheric pollution problems as well as 
in laboratory and industrial mixers. Here the dispersion is intimately related to the 
mixing rate. The second aspect of the experiment has been concerned with the scalar 
concentration in the jet farther downstream, where the two sources have completely 
mixed with each other. Here we have shown that the scalar field is independent of how 
it is introduced (be it from heated rings or from heating the whole jet). The scalar 
fluctuations are now completely determined by the mixing of the warm jet with its 
surroundings. In this region, which we have called the far field, the temperature field 
is self-similar. We will now summarize our main findings. 

The scalar field from a single heated ring (4 3.2) produces very large fluctuations close 
to the source, but after about 1.5 eddy turnover times (at x / D j  z 20 if the ring was 
placed at x / D j  = 9, figure 5), the fluctuating scalar field becomes similar to that 
produced by traditional heated jets. Dispersion from a very small ring (approximating 
a point source) produced mean profiles that are Gaussian in both the near and far field 
(figure 7), while for the larger rings the mean profiles were a function of the ring 
diameter in the near field (figure 6a), only becoming Gaussian in the far field. The 
evolution of the half-width of the point source profile showed two ranges: an initial 
approximately linear growth followed by a slower growth rate, consistent with xl/' 
(figure 8). For all the heated ring experiments the asymptotic value of the scalar 
fluctuation intensity, (O')"''/ lT,,  is approximately 0.2, the same as that observed in 
heated jet experiments. 

When two heated rings were used to study the mixing of two independently 
introduced scalar fields (4 3.3), we have shown that the cross-correlation coefficient, p, 
between the two scalars is initially dependent on the ring configurations, having either 
positive or negative values close to the rings (figure 9). However by about 1.5 eddy 
turnover times, p tends to unity irrespective of initial conditions (figures 9 and 14). This 
rapid mixing is contrasted with that of two-scalar mixing in grid turbulence where 
complete mixing takes 3 4  eddy turnover times (figure 9). The early evolution of the 
segregation parameter, a, is also strongly dependent on initial conditions, but for the 
jet it approaches its asymptotic value of 0.04 in 1.5 eddy turnover times (figure 11 a), 
while in grid turbulence it takes over 4 eddy turnover times to reach its (apparent) 
asymptotic value of around 0.2 (figure 11 b). Our results on the coherence (figure 13) 
show that the large scales tend to lead the small scales in their evolution. 

In the far field, where p = 1 (§3.4), our measurements were done using either a 
heated jet or heated rings, since here the thermal field is the same regardless of its 
origin. Here the scalar p.d.f.'s are Gaussian along the jet centreline (figure 15) but 
significantly skewed to the high-temperature fluctuations off the jet centreline (figure 
16). The scalar spectrum (along the centreline) shows a scaling region of slope 1.37, 
while that of the velocity is 1.47 (figure 17). Measurements of the scalar derivative 
kurtosis (figure 18) show the expected upward trend with ('jet) Reynolds number, which 
was varied from 4500 to 18000. 
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Considerable attention was given to the relationship between the integral-scale 
scalar fluctuations, and the dissipation-scale fluctuations, in the far field. The 
correlation between O2 and showed a significant downward trend with Rej (figure 
19), decreasing as approximately Re;'i2. This could be expected since the large and 
small scales become less coupled as Re increase. On the other hand the conditional 
expectation of (A6')2 on 8, determined for temperature differences measured at various 
angles to the flow, showed that (A6')2 is still significantly dependent on 6' even at the 
highest Reynolds number we have studied (figure 20). We have noted that the 
conditional scalar dissipation is a significant term in the scalar p.d.f. equation. We 
showed that another term in the p.d.f. equation, the conditional expectation of the 
velocity fluctuations on 0, is close to the joint normal values (figure 22). We also 
investigated the expectation of d26'/at2 conditioned on 6' and showed that is a nonlinear 
function of 6' off the jet centreline (figure 21). Finally we have shown that Taylor's 
hypothesis, when used for determining conditional statistics, fails both on and off the 
jet centreline (figure 23). 
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